20-Oct	Room 1 - Earthen materials DAY 1			
TIME 12.45-13.05	Recent advancements on the effect of bio- stabilisation on the mechanical and hygrothermal properties of earthen building materials	Authors Alessia Losini, Agostino Walter Bruno, Magda Posani, Samuel I. Armistead, Adewumi John Babatemi, Paulina Faria, Simon Guinheneut, Ioannis Ioannou, Alejandro Jiménez Rios, Muralidhar Kamath, Denrick Mevedaza, Rarfali Panagiotou, Alessandra Ranesi, Magdalini Theodoridou, Selina Vacutik, Snežana Vucetic, Guillaume Habert, Céline Perlot, Ana Margarida Armada Brás	corresponding author's email alessialosini@gmail.com	Abstract Raw earth is a viable alternative to traditional energy intensive building materials like concrete and fired clayey materials. It can be locally sourced and serves as an excellent hypothermal buffer, regulating indoor temperature and relative humidity. Unlike mainstream building materials, earth is also fully recycleble at the end of its like cycle. However, stabilisation the addition of supplementary materials to enhance mixture stability - is often required to enhance the durability of earthen building products and their resistance to iliquid water erosion, typically increasing their environmental limpact. To mitigate this impact, various bio-based stabilisation methods have recently been explored by the scientific community. These involve the addition of biopolymers, bio-fibres or the triggering of bio-mineralisation processes. Still, the effects of these novel bio-stabilisation methods on the mechanical and hygrothermal behaviour of earthen building composites/products require further investigation. This paper provides an overview of existing experimental methods for measuring the mechanical, hygroscopic and thermal properties of bio-stabilised earthen products, along with key findings from the literature. Insights from this review can help guide future research on bio-stabilised earthen products.
		Lily Walter, G. Medjigbodo, Y. Estevez , O. Nait- Rabah , L. Linguet	<u>lily.walter@univ-eiffel.fr</u>	Extended abstract (Abstract: Not shared - Missing copyright agreement)
13.25-13.45		Ashish Bastola, Nicholas Benjamin Petersen, John Rushing, Pavan Akula	bastolaa@oregonstate.edu	Improvement in engineering performance of chemically stabilized soil is due to the reaction between reactive soil minerals and stabilizers. The pozzolanic products that form as a result of the reaction, such as calcium silicate hydrate, ettringite, and stratlingite, are responsible for the modification of treated soil. Formation and durability of these pozzolanic products are controlled by the pH and chemical composition of the pore solution of treated soil, however, there have been limited studies investigating the influence of pore solution chemistry on the performance of chemically stabilized soil. In this study, natural and simulant soil was treated with lime and cement. They were cured for up to 28 days, and pres solution was setteracted at regular intervals. The pH and ionic composition of the solution was determined and used as input for thermodynamic modeling software to predict stability of the pozzolanic products. The results were validated through mineralogical characterization, such as XFD and TGA. Unconfined compressive strength measurements were conducted concurrently as a process monitoring tool. The thermodynamic model showed stability of CSH and ettringite in OPC coment and CSA cement, and this was verified through XRD and TGA. Therefore, pore solution chemistry has potential application in monitoring the performance of stabilized geomaterials over the course of their service life.
13.45-14.05	Potential of Treating War-Polluted Soils for Earth-Based Construction in Ukraine	Anna Pomazanna, Mykhailo Shevchenko, Oleksandr Bonchkovskyl	a_pomazanna@khsa.edu.ua	The study investigates the feasibility of repurposing soils contaminated by military activity in Kharkiv Oblast, Ukraine, as sustainable feedstock for post-conflict reconstruction. While research in Ukraine has centered on agricultural and ecological impacts of soil contamination, its rote lin post-were reconstruction remains largely unexamined. In this study, rine soil samples from two soil profiles were analysed for heavy-metal content. After conducting particle size distribution analysis and performing field tests for earth-based materials on the loses sublayer from Markiv's Oblast, two remediation strategies were piloted. The dilution strategy blends contaminated soils with secondary aggregates to reduce heavy-metal concentrations below regulatory thresholds while producing prototypes of compressed earth blocks (CEB). The encapsulation strategy encloses the contaminated core within protective insulation and cay or lime plaster layers, mmobilizing residual metals through sorption and pH buffering. Both approaches demonstrated technical viability but face regulatory and methodological hurdles. Local resource constraints and the urgent need for standardized long-term leachate and dust-release protocols are also highlighted. These findings indicate that war-impacted soils can be transformed into safe, locally sourced building materials, thereby reducing landfill burdens and supporting low-carbon reconstruction in Ukraine.
14.05-14.25	Bio-based fluidification of earth mortar using tannin addition	Samuel Auger, Jean-Emmanuel Aubert, lijy WALTER, Jean-Christophe GARRIGUES, Emile Perez	<u>s. auger@insa-toulouse.fr</u>	The construction sector accounts for approximately 40% of energy consumption and 20% of greenhouse gas emissions in France, primarily due to the use of cement. This could be mitigated by replacing cement with raw earth in many cases. However, performance and processing of raw earth need significant improvements to enable industrial-scale production. It is therefore essential to reduce water content while maintaining consistency. This study investigates the combination of two types of tannins with three different types of soils in both unmodified and atkaline environments, as alternatives to environmentally harmful chemical fluidizers. The pH of the mixing solutions as adjusted using sodulum hydroide. Consistency was quantified using a pentermeter, Pessults indicated that the addition of both tannins reduced the water content of all soils while maintaining consistency (-17% on average). In an atkaline environment, this effect was enhanced for kaolintle (-42%), whereas it diminished for smectite (-10%). For the soil rich in calcite, no significant change in behavior was observed between neutral and high pH levels (-28%). In the presence of too much tannin, a surface-active feet ctook place, a seating the mortar. This study validates the use of tannins to fluidify kaolinite, however it highlights that various soils react differently. Further investigations, such as zeta potential measurements, are needed to confirm the adsorption behavior of tannins, particularly for kaolinite in a basic environment, and to assess whether the basic conditions inhibit adsorption in the case of smectites.
14.25-14.45	Exploring alternative stabilization for compressed earth blocks: a systematic literature review	Ricardo Cruz, José Alexandre Bogas, Alessandra Ranesi, Paulina Faria	ricardojtcruz@tecnico.ulisboa.pt	Compressed earth blocks (CEB) are gaining attention as a sustainable alternative to traditional masonry units due to their low embodied energy, reduced carbon emissions and use of locally sourced materials. However, their vulnerability to water, particularly in regions with heavy rainfall and fooding, remains a major challenge. To address this, Portland cement is often used as a shabilizer, but its significant environmental impact has driven researchers to seek more sustainable alternatives. In response, recent studies have explored partial replacement of Portland cement with industrial by-products and wastes such as fly ash and ground granulated blast furnace slag. While some of these substitutions showed promising results, they still raise concerns. This systematic review evaluates the potential of stabilizing CEB solely with alternative reactive materials with low embodied energy. Using the PRISMA framework, relevant studies from the Web of Science database were analyzed. Findings indicate that both organic and inorganic attenantive indees can substantially enhance the mechanical strength of unstabilized CEB. By highlighting eco-efficient stabilization strategies, this review contributes to advancing sustainable practices in earth-based construction.
21-Oct	Room 1 - Earthen materials DAY 2			
12.45-13.05		Authors Raphael Kuhn, Pietro Lura, Guillaume Habert, Ellina Bernard	corresponding author's email raphael.kuhn@empa.ch	Abstract A good workability of clay-based building materials during mixing and placing is a key factor when building strong and durable structures. However, the flowability of clay mineral-based materials is impaired by stabilization with hydraulic binders such as Portland cement-based binder. While stabilization is essential to increase the mechanical properties and therefore cannot be omitted, it is possible to reduce the viscosity of the material with superplasticizers. Common clay superplasticizers such as sodium hexametaphosphate (NaHMP) are incompatible with portland cement-based binder, as they considerably retard Portland cement hydration. Hence, stabilizers that are both compatible with clays and superplasticizers must be sought. In this study, the combination of NaHMP and MgO-silicate cement is tested as a potential superplasticizer and stabilizer for clay-rich materials. The influence on the rheology is investigated by rheometer measurements. The mechanism of action is analyzed based on the particle interactions using zeta potential and static light scattering (SLS). The sorption behavior of the superplasticizer is determined by 31P MAS sSNMR and pore solution analysis (ICP-OES and pH). It is shown that NaHMP adsorbs as a polyphosphate with different chain lengths. The polyphosphates induce an increased negative surface charge on the particles, which leads to strong electrostatic reputsion. This repulsion reduces the forces that must be overcome to fluidify the material and allows the desired workability to be achieved during casting of structural elements.
13.05-13.25	Regenerative Retrofitting of Built Environment Assets Via Ecologically Active Soils	Alejandro Jiménez Rios, Juliana Calabria- Holley, Francisco Javier Castila Pascual	ajr225@bath.ac.uk	It is estimated that 80% of the buildings that will exist in 2050 have already been constructed. However, many of these buildings perform poorly in terms of energy efficiency and fail to comply with net-positive solutions. Natural soil is a low-embodied energy, recyclable, and healthy material that has been used for millennia in our buildings, following vernacular traditions and sustainable practices. When enhanced to be ecologically active, soil can support plant growth, offering a path to retrofitting buildings that enhance thermal insulation, expand green urban surfaces, improve air quality, and elevate both aesthetics and occupant well-being. Soils are considered ecologically active if they can provide the necessary humidity level and nutrition conditions for plant germination and long-term viability. This paper presents the rationale and the objectives of the Regenerative Retrofitting Via Ecologically Active Soil Structures (Reeco-Soil) project, which aims to establish a comprehensive understanding of the state-of-the-art and regenerative potential of retrofitting built environment assets using ecologically active soil structures. The study employs a methodology based on PRISMA guidelines. Preliminary results are presented according to keyword clusters and publication year distribution, with approximately 70% published within the last decade, indicating a strong and current evidence base. Ultimately, this project aims to generate a flourishing relationship between humans and the living world by introducing a regenerative and innovative approach to building retrofitting.
13.25-13.45		Chiara Turco, Elisabete Telxeira, Ricardo Mateus	id9631@alunos.uminho.pt	The construction sector has a significant impact on the environment through greenhouse gas emissions, energy consumption, resource depletion, and waste generation. In response, earth is increasingly recognised as a sustainable construction material due to its abundance, local availability, non-toxicity, and excellent hygroscopic properties. While research on earther materials has underscored their environmental and thermo-hygrometric benefits, the recyclability of earth, particularly when stabilised with mineral binders, remains poorly understood. Stabilised soils are frequently regarded as less recyclable, yet their actual reuse potential has been scarcely investigated. This research investigates the recyclability of time-stabilised soils, focusing on two soil types with different grain is size. Two recycling methods were evaluated: recycling the stabilised soil without further modification and applying additional stabilisation in each cycle. These methods were tested for three recycling cycles to evaluate material behaviour and performance over time. The change in aggregate size after each cycle, compressive strength, and water absorption by capillarity were studied. The study found that additional stabilisation must be applied for recycling without downcycling previously stabilised soils. The results show that if the same amount of lime is applied at each cycle, the strength increases exponentially. Due to the irreversible nature of mineral stabilisation, it is recommended to use cementitious stabilisers only when necessary.

	Ultralight Earth: A Preliminary Look into Thermal	Jonanna Hyrkas, Matti Kuittinen, Magda Posani		This paper presents a preliminary investigation into ultralight earth (ULE) insulation materials developed using locally	Ĺ
	Performance of Locally Sourced Fibre-Earth			sourced clay and bio-fibres from Finnish agriculture and industrial side streams. The study responds to the urgent need for	i
	Composites			construction materials that have low carbon footprint and high carbon storage, supporting Finland's legally binding 2035	i
				carbon neutrality target and broader bioeconomy objectives. Four ULE composites, based on rye straw, hemp shives, reed	Ĺ
				chaff, and recycled wood, were developed in collaboration with a local clay craftsperson and tested for dry density and	Ĺ
				thermal conductivity. The resulting materials exhibited dry densities below 450 kg/m³, qualifying as ultralight, and achieved	Ĺ
				thermal conductivity values as low as 0.047 W/(m·K). These results are competitive with conventional insulation materials,	i
				such as mineral wool and expanded polystyrene. Notably, the straw-, reed-, and hemp-based ULEs met the thermal	Ĺ
				insulation threshold of 0.065 W/(m-K), as defined in European guidelines for ETICS, while all formulations qualified as	Ĺ
				thermal insulating mortars under EN 998-1:2017. These findings demonstrate the feasibility of ULE materials as sustainable	Ĺ
				alternatives for thermal insulation in subarctic climates. The study also lays the groundwork for future optimisation of mix	i
				designs to enhance performance and durability, paving the way for wider adoption in both new and renovated buildings. This	Ĺ
				work contributes to closing the knowledge gap on ULE applications in Nordic countries and supports a circular, low-carbon	Ĺ
				construction sector in Finland.	i
					i
14.05-14.25	Bio-stabilisation of earthen materials: a	Magda Posani, Guillaume Haber, Yannick Igor	magda.posani@gmail.com	With its potential for low embodied carbon, bio-stabilised earth offers a sustainable alternative to traditional carbon-intensive building	i
	perspective on the potential contribution to	Fogue Djombou, Yi Du, Evy Vereecken, Pierre		materials. Moreover, unlike lime and cement stabilisation, bio-stabilisation methods hold the promise of improving the durability of	i
	- January Company	Esteve-Bourrel, Léo Pinchard, Alessia		earthen materials while retaining their moisture buffering capacity and recyclability. Despite the promising characteristics of bio-	Ĺ
		Emanuela Losini, Guilherme Barreto Arez		stabilised earth, research on the topic remains limited. The RILEM TC BEC aims to address this gap by advancing the understanding of bio-	i
		Coelho, Lola Ben-Alon, Olga Beatrice Carcassi,		stabilisation. Its objectives include developing a classification system for bio-stabilisation techniques, examining their effects on the	Ĺ
		Mansoure Dormohmadi, Alejandro Jiménez		microstructure and chemical composition of earthen materials, and evaluating their macroscopic impact on mechanical and	Ĺ
		Rios, Muralidhar KAMATH, Michele Libralato,		hygrothermal properties. The TC also aims to develop and promote a performance-based design approach for diverse applications of bio-	i
		Joana Maia, Christina Makoundou, Bruno Malet		stabilised earthen materials. Finally, the TC intends to evaluate the role of bio-stabilised earth constructions in climate change adaptation	Ĺ
		Damour, Alessandra Ranesi, Céline Perlot,		and mitigation strategies. This paper introduces the work of the RILEM TC BEC and presents findings from its literature review, focusing on	i
		Agostino Walter Bruno, Snežana Vucetic, Ana		the potential of bio-stabilised earth for climate change adaptation and mitigation.	i
		Margarida Armada Brás			i

20-Oct Room 2 - Cement, Cementitious materials, and Concrete DAY 1

20 000	DAY1			
TIME	Title	Authors	corresponding author's email	Abstract
12.45-13.05	Influence of Magneto-Rheological Response on Early Hydration and Microstructure in Cement Paste	Feng Hu, Dengwu Jiao	hufeng0227@outlook.com	The rheological properties of concrete are crucial for its workability and mechanical performance, but the requirements may conflict at different stages of construction. For example, 3D concrete printing demands low yield stress and viscosity for pumpability, but higher static yield stress post-excrusion to prevent collapse. Therefore, it is necessary to regulate the rheological properties to balance these conflicting requirements. Magneto-rheological control is an innovative approach that involves adding magnetic particles to cementitious materials, with their movement and arrangement altered by an external magnetic field. This approach offers new possibilities for actively regulating the rheological properties of cementitious materials. However, the effects of magnetic fields and magnetic particles on early hydration and microstructure are not fully understood. To address this gap, this study investigates the impact of magnetic-rheological response on the early hydration and microstructure in cement paste by adding magnetic particles and applying an external static magnetic field. The results show that the magnetic field induces a stronger magneto-rheological response with higher water to cement ratios, increased particle content, and smaller particle sizes. While it does not after early hydration products, it densifies the individual content is below 5%, but prolonged exposure or higher content causes anisotropy due to magnetic field gradients. These findings contribute to a better understanding of magneto-rheological control and its potential in construction applications.
13.05-13.25	Investigation of carbonation for low carbon concretes under indoor, shelltered and unsheltered temperate climate using a diffusive method	Ouijdane Qacami, Bruno Huet, Philippe Turcry, Karim Ait Mokhtar, Ravi A. Patel, Frank Dehn	ouijdane.qacami@holcim.com	Poster (Abstract: Not shared - Missing copyright agreement)
13.25-13.45	Mixer power consumption as an indicator of water content and concrete properties	Barbara Aboagye, Ryan Gosselin, William Wilson	barbara.aboagye@usherbrooke.c â	Variations in aggregate moisture and environmental conditions affect concrete mixing dynamics and concrete properties. As aggregate moisture measurement is still a challenge in some types of concrete plants, the power consumed by the mixer during concrete mixing can be used as a valuable information regarding the water content and concrete performance. The objective of this study is to explore the feasibility of using the power consumption curve as an indicator of water content and concrete properties. Six concrete mixtures with water contents varying between -15% to 15% of the nominal water content (1838g/m3) in increments of 5% were used in this study. An ammeter was used to measure the mixer power consumption during mixing. Power consumption curve features, such as loading peak power, fluidity power, and minimum power after loading peak showed a strong correlation with water content and concrete properties. A strong linear relationship was observed between water content and concrete properties such as slump (R* = 0.93), resistivity (R* = 0.98), and compressive strength at 1 day (R* - 0.88). The results show the strong correlations between the power consumption curve, water content, and concrete performance, as well as the capacity of the curve to detect changes in concrete mixture consistency and performance. These findings show the potential of the power consumption curve as a real-time, non-invasive tool for monitoring water content and concrete properties.
13.45-14.05	Micromechanical Modeling of Spatially Heterogeneous Interfacial Transition Zone (ITZ) in Recycled Aggregate Concrete	Ahmed Shittu, Feng Li, Elske Linß, Florian Kleiner, Christiane Rößler, Luise Göbel	ahmed.olanrewaju.shittu@uni- weimar.de	The use of recycled aggregates (RA) in concrete has gained increasing atten-tion due to its potential to enhance sustainability in construction. However, the varying properties of different RAs can significantly impact concrete per-formance, both at the microstructural and macroscopic levels. A key factor in-fluencing mechanical behavior of concrete is the interfacial transition zone (ITZ), where aggregates interact with cement paste. The ITZ plays a crucial role in determining concrete's strength, durability, and overall performance. Despite its importance, many existing models oversimplify the ITZ as a uni-form layer, ignoring its actual variability. This study examines the impact of spatially varying ITZ properties in con-crete containing two different RAs, including abraded concrete aggregate (RCa) and recycled concrete aggregate in the micrometer-scale of hydration products to the centimeter-scale of the bulk material. In addition to existing approaches, the present model incorpo-rates the non-uniform characteristics of the ITZ. Using insights from nanoindentation and SEM-EDX analyses, it was ob-served that ITZ thickness, porosity, and mechanical properties vary depending on the type of RA and its interaction with the new cement paste. These variations are integrated into the micromechanical model, resulting in a more accurate analytical representation of the elastic and compressive behavior of concrete with recycled aggregates. This approach also enhances understand-ing of how different RAs influence the ITZ structure and, consequently, the overall material performance.
14.05-14.25	Comparison between different methods of determining apparent elasticity modulus of cementitious materials	Mauro José da Silva Filho, Ana Karoliny Lemos Bezerra, Thamires Ximenes Cavalcante, Lucas Feitosa de Albuquerque Lima Babadopulos, Jean-Claude Carret, Jorge Barbosa Soares	mauro.silva@det.ufc.br	This study aims to compare four different techniques for determining the apparent elasticity modulus of cementitious materials: Impact Resonance Testing (IRT), Uttrasonic Testing (UT), Static Modulus Testing (SM), and Dynamic Modulus Testing (DM). Tests were conducted on twelve cylindrical specimens comprising three conventional concretes (with and without superplasticizer), a high-performance concrete (HPC), and a cement mortan. The experimental campaign followed a sequential protocol: (i) initial characterization using GR (iii) after, evaluating the CM testing under sinusoidal loading; (v) evaluating RM again, to check for microdamage associated with the tests and (v) final evaluating SM. All specimens were tested using the four techniques under the same conditions, allowing for direct companison of the results. The IRT showed excellent agreement with the DM method, with differences of less than 1 CPa across all materials. The UT also presented good consistency, particularly for stiffer concretes, while the SM yielded lower average values and higher variability. Strong linear correlations were found (near-1 R* values) between IRT and the other testing methods analyzed. The findings confirm the potential of IRT as a reliable, fast, and non-destructive technique for evaluating the stiffness of cement-based materials. The methodology also proved effective in detecting modulus reductions caused by repeated loading cycles, especially in mortar specimens.
14.25-14.45	Rheological and mechanical analysis of alkali- activated concretes with BSSF steel slag as precursor and aggregates	Madson Souza, Abcael Melo, Lucas Babadopulos	madsonlucas@alu.ufc.br	The significant environmental impact associated with Portland cement production has driven the development of alkali-activated binders (AABs) as more sustainable alternatives. This study aimed to evaluate the rheological and mechanical properties of alkali-activated concretes (AACs) incorporating steel slag from the Baosteel Slag Short Flow (BSSF) process, used as a precursor and as aggregate for civil construction and infrastructure applications. Two BBSF-based AACs were produced using natural aggregates (AAC-N) and BSSF (PCC-8) aggregates (AAC-8), and their performance was compared to Portland cement concretes made with natural (PCC-N) and BSSF (PCC-8) aggregates (AAC-8), and BSSF (PCC-8) aggregates. Workballity was assessed through rhemorely and slump flow tests, while compressive strength rests were used to evaluate mechanical properties. Flow rheometry results confirmed that all concretes exhibited self-compacting behavior. AACs displayed pseudoplastic characteristics and required over three times the mixing energy of PCCs — attributed mainly to the higher viscosity of the alkaline activators — while PCCs exhibited Newtonian flow behavior. Notably, the substitution of natural aggregates with BSSF reduced the torque demand and did not significantly after the overall rheological behavior. All concretes reached compressive strengths above 35 MPa at 28 days, with AAC-8 and PCC-0F reaching 42.1 MPa and 81.5 MPa, respectively. The incorporation of BSSF also led to an earlier increase in compressive strength, likely due to secondary reactions. These findings highlight the potential of BSSF as a sustainable and effective precursor and aggregate in AACs, supporting its use in civil construction and infrastructure applications.
14.45-15.00	Quasistatic Crack Propagation in Cement-Based Materials Induced by Pyrrhotite Oxidation	Osamah Dehwah, Nicos Martys, Stephanie Watson, Edward Garboczi	osamah.dehwah@nist.gov	The deterioration of concrete foundations due to pyrrhotite oxidation has been a significant issue in Connecticut and Massachusetts, prompting numerous studies to better understand its underlying mechanisms and chemical reactions. Controlling the iron sulfide content in aggregate is crucial to mitigating this issue, as remediation costs are substantial. Pyrrhotite oxidation is a slow process, and while a few thousands of homes in Connectcut have been confirmed to have pyrrhotite-induced damage, the Connecticut Department of Housing estimates that up to thousands homes may have been built with pyrrhotite-bearing aggregate and could be susceptible to future deterioration. To investigate the impact of pyrrhotite oxidation on concrete deterioration, a quasistatic 2D finite element analysis was employed to simulate crack network development in cement-based materials. While a two-dimensional model cannot fully capture three-dimensional reality, I provides valuable insights into how microstructural features influence crack growth and how internal expansion mechanisms contribute to crack network patterns, and the associated degradation of concrete's elastic properties, including Young's, bulk, and shear moduli. In addition, a semi-empirical model was developed to establish the relationship between mechanical properties and crack area, providing a useful tool for understanding the patterns of concrete cracking due to internal phase expansion.

21-Oct Room 2 - Cement, Cementitious materials, and Concrete DAY 2

Title Authors corr

12.45-13.05	Synthesis and processing of dense tricalcium	Aidyn Tugelbayev, Carlos A. Fortulan, David	aidyn@vt.edu	Tricalcium silicate (Ca3SiO5, C3S) and dicalcium silicate (Ca2SiO4, C2S) are the most critical mineral components in portland
.2.10 10.00	and dicalcium silicates for surface-sensitive characterization	Jarret Wright, Carolina Tallon, Alexander Brand		governing early-age and long-term hydration and strength development. Understanding their structural and surface behavior is or advancing cement chemistry and improving concrete mechanical performance and durability. Currently, most studies rely on pormor of calcium silicates that limit advanced surface analyses of these materials. This study addresses the need for bulk, low-pcalcium silicates samples suitable for high-resolution surface characterization by presenting a robust, reproducible method for synthesizing dense polycrystalline C ₂ S and F ₂ S bulk specimens with 5 % to 8 % porosity. Mixtures of calcium carbonate and are silica were sintered at 14.50° Can 4500° Cv, with and without stabilizing lons, to produce dense polycrystalline PC2S and mono triclinic C3S bodies, respectively. The powders were granulated with a polyvinyl butyral binder in isopropanol and compacted via isostatic pressing, followed by a final sintering step to ensure homogeneity. The study presents detailed optimization procedures sample preparation, including binder selection, pressing conditions, and sintering protocols, while offering practical recommend
				and troubleshooting guidance to address potential challenges, such as phase uniformity and polishing requirements. The polishin product yields samples with smooth surfaces suitable for surface-sensitive analyses and characterization of crystallographic or including scanning electron microscopy (SEM) and electron backscatter diffraction (EBSD). By enabling consistent synthesis of dicalcium silicates, this work supports advanced experimental investigations into the microstructural evolution of cement phases, contributes to the design of more sustainable and durable construction materials.
13.05-13.25	Active Rheology Control of Cementitious	Paula Heik, Timon Echt, Fabian Ehle, Luise	paula.heik@uni-weimar.de	Active Rheology Control (ARC) represents an innovative concept to control the rheological behavior of cementitious
	Materials: Comparing Residual Materials with Potentially Magnetic Particles	Göbel		materials. By incorporating magneto-responsive particles, rheological properties can be modified in a targeted mann through the application of an external magnetic field. However, many of the particles studied present challenges in the cost and availability, limiting their suitability for large-scale applications. Therefore, there is an increasing need to de more economical and environmentally friendly alternatives. In this study, two different residual materials in the form representing promising candidates to exhibit magneto-responsive behavior, were investigated. Their magnetic proper were analyzed using wibrating sample magnetomerty, while particle size distributions were determined by means of it diffraction. Additionally, oscillatory rheometer tests with a magnetorheological device were used to evaluate the magnetorheological behavior of slag-including cement pastes. The results reveal that both slag materials exhibit a pronounced magnetorheological response, that is furthermore strongly dependent on the particle dosage. With these findings, the range of suitable materials for ARC expands, contributing to the development of more sustainable, eco-ecementitious systems with enhanced functional properties.
	Effects of blending water reducing admixtures (WRAs) on rheology and workability retention of limestone metakaolin blended cement	Thien Tran, Daniel Benkeser, Kimberly Kurtis, Newell Washburn, Kejin Wang, Maria Juenger	thien.tran1@austin.utexas.edu	It is widely acknowledged that metakaolin in blended cements improves engineering properties and durability. Howeverduces the blend's fresh flowability and shortens stump retention time. In this investigation, three workability modific (MM) were used to fluidize a mixture of ASTM CS95 Type IL cement containing 15 th 45 metakaolin, called imensione metakaolin-blended cement (LMC). The study aimed to use WMs and their combinations to curb the workability loss of LMC system. Dosages of each WM and blends of them for the LMC system were determined in which the LMC reacher cement equivalent yield stress and similar flowability are denion. Compressive strength and head try were also studied to evaluate the impacts of the WMs on the LMC system. The results highlighted the possibility of usi combinations of WMs to deal with the loss in the rheological performance of calcined clay limestone blended cement
13.45-14.05	Influence of partial replacement of cement by glass powder waste and glass microspheres on rheology of self-compacting concretes	Abcael Meio, Madson Souza, Bruna Fideles, Francisca Paz, Kamila Guedes, Lucas Babadopulos	abcael.meto@alu.ufc.br	Self-compacting concrete (SCC) offers significant advantages in constructability due to its ability to flow and compact its own weight without the need for vibration. However, its higher cement content compared to conventional concrete environmental concerns, particularly regarding carbon emissions. This study explored the partial replacement of Port cement with glass-based materials - specifically angular glass powder waste (GP) and spherical glass microspheres (as a strategy to enhance the sustainability of RCC without compromising its freelogical performance. SCCs were per with 10%, 20%, and 30% GP by weight, along with SCCs with GM at 10% and 20% to evaluate the effect of particle sha rheological behavior. Rheological properties were assessed using a planetary rheometer. The results showed that neth or GM replacements affected the classification of the concretes as self-compacting. All systems exhibited slight this and behaved similarly to Newtonian fluids. While the use of GP led to increased apparent viscosity due to its angular geometry and larger particle size, GM improved flowability due to its spherical morphology. Overall, the incorporation based waste materials proved to be a viable approach for producing more environmentally sustainable SCCs suitable construction applications.
14.05-14.25	Nanotechnology as a feasible strategy for sustainable precast concrete production	Simone Rapelli, Denny Coffetti, Luigi Coppola	simone.rapelli@unibg.it	Nanotechnology, originally developed for high-tech applications, is increasingly being applied in the concrete sector. Among its va applications, it provides a cost-effective solution to accelerate early-age compres-sive strength development, a critical requirem precast concrete produc-tion, without increasing environmental impact or compromising the long-term durability. This study investigates the use of a C-S-H-based admixture to improve the economic and environmental sustainability, as well as manufacturing effi-ciency, of precast concrete. A conventional precast mixture was optimized by gadually reducing the cement or up to 60 kg/m3, while incorpor-ating the seeding admixture. The experimental investigation included adia-batic calorimetry, comp strength tests from 16 hours to 26 days, and simulations of environmental impact and production costs. The results demonstrate that the optimized mixtures achieved both early-age and long-term compressive strength targets, even wisignificantly lower cement content. Moreover, the optimized concretes exhibited a lower carbon footprint and production costs comparable to the reference mixture. These findings support the adoption of nanotechnology as a scalable and sustainable strate reduce the carbon footprint of precast concrete production.
20-Oct	Room 3 - Innovative, low-carbon ma	nterials		
TIME 12.45-13.05	Title Toward One-part Alkali-activated Low-grade	Authors Meddelin Setiawan, Claire White	corresponding author's email ms8898@princeton.edu	Abstract Developing alkali-activated materials (AAM) is one of the pathways to decarbonize cement manufacturing that currently contribute.
	Metakaolin via Inter-grinding: Assessing Reaction Kinetics and Nanostructure Evolution			of global anthropogenic carbon emissions. However, extensive deployment of AAMs in industry has yet to be realized, part of which due to the reluctance to work with "two-part" activation that requires handling large amounts of concentrated caustic solutions. Have developed a "one-part" AAM, where the dry mixture of precursor and activator is mixed with only water, resembling the hydre OPC. Low-grade calcined kaolinitic clay (low-grade metakaolin) was chosen as the aluminosilicate precursor due to the global ab of kaolinitic clays, making it more commercially attractive than the lower availability sources of they sah and blast furnace slight this work was to investigate the underlying physicochemical properties responsible for measured changes in reactivity, where the mixture was synthesized via inter-grinding in a planetary ball mill. It was found that inter-grinding increased the reaction knetics and extent of alkall-activation reaction. Preliminary results have shown that inter-grinding caused broadening of particle sisters and atteration of the bonding environment (nanostructure). Hence, this work aids in deepening our fundamental understanding of formation behavior of "onepart" alkali-activated metakaolin and our future aim of talloring larger-scale performance characteristic are central to actualization of design codes and standards for AAM.
13.05-13.25	A Novel Pathway to Low-Carbon Cements via Analcime Sand Valorisation	Shubham Jain, Daniel A. Geddes, Micael Silva, Brant Walkley	shubham,jain@sheffield.ac.uk	The cement industry has a substantial carbon footprint, generating roughly 0.91 kg of CO2 for every kilogram of Portland cement produced and accornary for of global CO2 emissions. This necessitates a swift transition to more sustainable methods. Furthermone, the construction industry faces increasingly urgent need to adopt two-action alternatives, such as supplementary cementations unsteined and once clinice replacementation under the contraction of the contraction

TIME	Title	Authors	corresponding author's email	Abstract
	Toward One-part Alkali-activated Low-grade Metakaolin via Inter-grinding: Assessing Reaction Kinetics and Nanostructure Evolution	Meddelin Setiawan, Claire White	ms899@princeton.edu	Developing alkali-activated materials (AAM) is one of the pathways to decarbonize cement manufacturing that currently contributes 5-1 of global anthropogenic carbon emissions. However, extensive deployment of AAMs in industry has yet to be realized, part of which is lide to the reluctance to work with "two-part" activation that requires handling large amounts of concentrated caustic southons. Here, have developed a "one-part" AAM, where the dry mixture of precursor and activator is mixed with only water, resembling the hydration OPC. Low-grade calcined kaolinitic caly (one-grade metakaolin) was ochosen as the aluminosilicate precursor due to the global abunda of kaolinitic clays, making it more commercially attractive than the lower availability sources of fly ash and blast furnace slag. The focu this work was to investigate the underlying physicochemical properties responsible for measured changes in reactivity, where the dry mixture was synthesized via inter-grinding in a planetary ball mill. It was found that inter-grinding caused broadening of particle size distribution and extent of alkali-activation reaction. Preliminary results have shown that inter-grinding caused broadening of particle size distribution and attention of the bonding environment (nanostructure). Hence, this work alks in deepening our fundamental understanding of the formation behavior of "onepart" alkali-activated metakaolin and our future aim of talloring larger-scale performance characteristics wf are central to actualization of design codes and standards for AAM.
13.05-13.25	A Novel Pathway to Low-Carbon Cements via Analcime Sand Valorisation	Shubham Jain, Daniel A. Geddes, Micael Silva, Brant Walkley	shubham.jain@sheffield.ac.uk	The cement industry has a substantial carbon footprint, generating roughly 0.91 kg of CO2 for every kilogram of Portland cement produced and accountin nearly 8% of global CO2 emissions. This necessities a swift transition to more sustainable methods. Furthermore, the construction industry faces an increasingly upen free det to adopt tow-carbon alternatives, such as supplementary cementitious materials and innovative clinier replacements, due to it growing demand for intrastructure and urbanisation. In recent years, the cement industry has seen widespread use of supplementary cementitious materials and innovative clinier replacements, due to it growing demand for intrastructure and urbanisation. In recent years, the cement industry has seen widespread use of supplementary cementitious materials and increasing industry of the production, or specifically in the cement industry has seen widespread use of supplementary cementitious materials from coal-fired power plants and steel production, respectively, improve cement properties and contribute to a reduced carbon footprint. However, a kgo shall be producted on the production of alternative and locally sourced resources to ensure a sustainable and resilient supply chain. Consequently, this scarcity requires the exploration of alternative and locally sourced resources to ensure a sustainable and resilient supply chain. Recognising this critical global need or alternative SOAR, his study investigated the potential of analcine sand, a by-product from tithium hydroxide production by Green Lithium Refining Ltd. (based in the LKI, as a promising novel additive for cement and concrete in the construction industry and other sectors. Utilising this by-product not only signs with circuite accommy includes but also offers a strategic advantage by everaging material liked to a significant growth sector. Moreover, the domestic production of analcines and would greatly benefit the British cement industry and economy. By decrease eliance on imported SCMs, the cement industry can
13.25-13.45	Predictive Modeling of Consistency Class Using Machine Learning Techniques on Industrial Concrete Datasets	Abdethamid HAFIDI, Benoit Hilloulin, Ilhame Harbouz, Ahmed Loukili, Ammar Yahia	abdelhamid.hafidi@USherbrooke. ca	In this study, we applied machine learning techniques to classify concrete into consistency classes, using real-world data provided by industrial partner in France. The dataset includes over 480 different mixtures and more than 1,515 concrete samples, most of which incorporate supplementary cementifusus materials (SCMS) such as slag and fillers. There are twelve input features and one output representing each of the five consistency classes. The machine learning models demonstrated strong performance, with the Light Grac Boosting Machine emerging as the best performer, with an F1-score exceeding 88%. Using Shapley Additive Explanations, we identified water-to-binder ratio, admixture dosage, and binder content as the most influental factors affecting the submo, Overall, this resend underscores the potential of machine learning to enhance concrete mix design and promote more sustainable construction practices, though future work is needed to validate the models across diverse regions, raw materials, and mix designs to ensure broader applicat and robustness.
13.45-14.05	A model material and an adapted protocol for the study of the shear thickening of low-carbon cement-based materials	Clémentine Delattaignant, Hela Bessaies-Bey, Nicolas Roussel	clementine.delattaignant@univ- elffel.fr	As W/C ratio is progressively decreasing, viscosity has become a major issue for sustainable concretes. Viscosity finds its origin in a Newtonian contribution induced by the shearing of the interstitial liquid and in a shear thickening contribution, the exact mechanism of which is still debated, in order to open new path for viscosity-reducing admixtures, we study in this work the shear thickening contribut to viscosity of model materials mimicking cement pastes. We develop a specific protocol allowing for the assessment of the shear thickening contribution at very high shear rates. At such rates, depending on the flow length scale, the material density and the resulting Reynolds number, inertia effects may be at the origin of turbulences inside the rheometer. These turbulences artificially increase the measured viscosity level and prevent from the exact quantification of material shear thickening. We therefore propose a selection of geometries and calibration procedures allowing for an extent of the shear rate range, in which the material shear thickening alone can be observed. Using the above protocol, we measure and isolate the shear thickening, From our results, we discuss the role played by the polymer molecular parameters and surface coverage. Our results open the path for the design of viscosity-decreasing admixtures dedicated to W/C sustainable concretes.
14.05-14.25	Evolution of phase composition and pore water in fresh OPC paste during accelerated carbonation and natural carbonation	Hao Yu, Lu Ge Cheng, Ryo Kurihara, Tung-Chai Ling, Ippei Maruyama	aprilyu@hnu.edu.cn	Extended Abstracts (Abstract: Not shared - Missing copyright agreement)

14 05 14 45	Industrial-scale production of low-clinker LC3	J. I. Galindo-Barajas, P. Perez-Cortes, M. A.	jorgegalindob@iqs.url.edu	Clays and limestone are widely available materials used as supplementary cementitious material (SCM's) and filler, respectively, to
14.20-14.40	cements using low-grade clays	Perez, R. Gonzalez-Olmos, M. Guillem	<u>jongegunduomas</u> , un eeu	can be interested and extended and extended as a supplementary contented and extended freetly with their kaolinite content, however, sourcing kaolinte-nich clays can be chaltenging in certain regions, despite the general abundance of clays deposits. This study investigates the feasibility of utilising low-kaolinite clays, in combination with limestone, for the production of low-clinite cerements. The clays were calcined at 850 °C and 950 °C and subsequent characterisation was carried out via X-ray diffraction (XRD), thermogravimentic analysis (GAA), and X-ray futoressence (XRF) to determine their mineralogical and chemical composition. Clay reactivity was assessed through the R3 test using isothermal calorimetry; in addition, the reactive silica content of selected clays was quantified. Finally, low-clinker cements incorporating calcined clay and limestone were produced at industrial scales. Their mechanical strength, setting times, and workability were evaluated. The results indicate that clays containing only 45% kaolinite can significantly contribute to the development of low-clinker cements, providing a viable alternative in regions where high-kaolinite clays are not readily available. Moreover, this study presents a practical approach to clay characterisation for industrial exement applications, which may serve as a useful reference for cement manufacturers interested in incorporating calcined clays into new products.
14.45-15.00	Evaluating The Performance of Limestone Calcined Clay Cement (LC3) Incorporating Low-Kaolinite Clays from The Ceramic Industry	Nesil Ozbakan Orhan, Derya Over	nesil_ozbakan@eskisehir.edu.tr	Clay, a globally abundant material, has the potential to serve as a cement substitute following calcination. Although the reactivity of kaolinitic clays in this process is well-established, further research is needed to fully understand the potential of low-grade clays with lower kaolinite content in cement production. This study investigated the potential of using clays with low kaolinite content (~22%) sourced from the ceramic industry in the production of limestone calcined clay cement (LC3) by calcining at 750 °C. The chemical composition of the clay was determined by X-ray furnescence (XRF), and its mineralogical analysis was performed using X-ray diffraction (XRD). The mechanical properties of LC3 mortars were assessed at various water-to-binder ratios and different curing ages. Furthermore, the mineralogical composition of LC3 pastes was characterized using XRD analysis, while the microstructural development of LC3 mortars was investigated through scanning electron microscopy.
21-Oct	Room 3 - Innovative, low-carbon ma DAY 2	terials		
	Title	Authors	corresponding author's email	Abstract
12.45-13.05	Recycling fiber-reinforced polymer waste in the construction industry	Huanyu Li, Jian Yang, Ning Zhang, Sohaib Nazar, Yiyan Ren, Lei Wang	unyu@163.com	Poster (Abstract: Not shared - Missing copyright agreement)
13.05-13.25	Development of Alkali-Activated Lunar Regolith for Sustainable Space Construction	Anas Driouich, María Chiara Dalconi, Claudia Esposito, Luca Valentini	anasdriouich@gmail.com	With the increasing emphasis on space exploration, global space agencies are advancing toward the establishment of human settlements on the Moon, which is considered as a pivotal step for future extraterrestrial missions. In this context, the in Situ Resource Utilization (ISRU) strategy promotes the use of local lunar resources, such as regolith, to produce durable building materials. Alkali activation of lunar regolith emerges as a promising approach, minimizing dependence on terrestrial supply chains by generating cementitious binders capable of withstanding lunar environmental conditions. This study explores the potential of using lunar regolith simulants to synthesize alkali-activated materials suitable for lunar construction, with a particular focus on optimizing their fresh and hardened properties. It was observed that the high content or fractive silica and alumina provided by metakaolin significantly enhances the formation of NS-H gel phases, thereby increasing both yield stress and compressive strength. Response surface methodology revealed that under a defined optimal condition the material reached a yield stress of 19.77 Pa and a compressive strength of 27.6 MPa. Additionally, incorporating 3% urea as an admixture markedly improved workability and reactivity, enabling a reduced liquid-to-solid ratio and enhanced compressive strength. Preliminary vacuum-curing tests simulating lunar environments further emphasized the importance of optimizing water content and additive selection to minimize void content and maintain dimensional stability under low-pressure conflictions. This work presents a critical advancement toward sustainable lunar infrastructure, contributing both to scientific knowledge and practical applications in extraterrestrial engineering.
13.25-13.45	Porosity investigations of metakaolin based geopolymers	Carlotta Pacente, Giulia Masi, Lucia Ferrari, Elisa Franzoni, Maria Bignozzi	carlotta.pacente2@unibo.it	Ordinary Portland Cement (OPC) is widely used in construction and is responsible for 5-8% of global CO ₂ emissions. To date, the challenge is to find alternative sustainable solutions to traditional binders. Alkali-activated materials (AAMs) and geopolymers (GP) are among the most promising ones for this purpose, due to their fast-hardening at room temperature curing. This study aims to evaluate the correlation between microstructure and mechanical properties of geopolymeric binders based on metakaolin (MK) and ceramic tile waste (R), exploiting two different techniques such as mercury intrusion prorsimetry (MIP) and 1H time domain-nuclear magnetic resonance (1H TD-NMR) for porosity investigations. The results highlight as significant increase in compressive strength development between 2 and 7 days, regardless the presence of ceramic waste. However, ceramic waste promotes lower compressive strengths than MK-based geopolymers for all the curing times in agreement with a broader pore size distribution in the range between 0.01-300 mm. 1H TD-NMR technique highlights that gel pore formation is delayed when ceramic waste is used as co-precursor, but similar refined nanopores structure are obtained after 2 days of curing, regardless the presence of ceramic waste.
13.45-14.05	Key Mineralogical Events as Temperature Indicators in Microwave-Calcination of Palygorskite Clay	Natacha Faria, Lincy Varghese, Raju Sharma, Moustapha Moustapha, Jean-Philippe Laviolette, William Wilson	natacha.nascimento@usherbrook e.ca	Microwave (MW) heating technology offers rapid, clean, and volumetric energy transfer, making it highly effective for thermal processing. Owing to these advantages, MW heating has been explored for various applications, with calcined clay being particularly notable due to its simple processing conditions. However, accurately determining the temperature achieved during MW heating remains challenging due to sensor incompatibility with electromagnetic fields, reliance on surface

13.45-14.05	Key Mineralogical Events as Temperature Indicators in Microwave-Calcination of Palygorskite Clay	Natacha Faria, Lincy Varghese, Raju Sharma, Moustapha Moustapha, Jean-Philippe Laviolette, William Wilson	natacha.nascimento@usherbrook e.ca	Microwave (MW) heating technology offers rapid, clean, and volumetric energy transfer, making it highly effective for thermat processing. Owing to these advantages, MW heating has been explored for various applications, with calcined clay being particularly notable due to its simple processing conditions. However, accurately determining the temperature achieved during MW heating remains challenging due to sensor incompatibility with electromagnetic fields, reliance on surface temperature measurements, and the presence of localized not spots. This study investigates the mineralogical transformations of palygorskite clay using in situ high-temperature X-ray diffraction (HT-XRD) to identify key mineral events that can serve as temperature indicators during MW calcination. Thermogravimentric (DTG) analysis is conducted to further examine mineralogical transformations such as dehydroxylation and decarbonation. The results highlight notable transformations, including phase decomposition, dehydroxylation, and polymorphic transitions, as potential indicators of temperature during MW pyroprocessing. This approach offers a promising method for predicting temperature in MW calcination and contributes to the development of a database of suitable mineral candidates for MW-based pyroprocessing applications.
14.05-14.25	Silicate solidified lunar regolith: A novel scheme from material properties to processing methods	Zifan Geng, Guoqing Geng	gengzifan421@gmail.com	Extraterrestrial exploration, represented by Lunar base construction, has been promoted worldwide as a multi-disciplinary, cutting-edge and strategic issue. Originated from lunar geopolymens, we herein proposed a novel extraterrestrial construction scheme, silicate solidified lunar regiolith (SSLR). It contains only 4 wf8 of silicates, which no longer underge geopolymeration but bind the particles through vacuum dehydration. Under this mechanism, various silicate modulus and modifications (inorganic, organic and physical modifications) have been detected to optimize the silicate adnesive. Through a simulated unar ervironment combining high vacuum and large temperature variation, SSLR can be produced in both thermal and cryogenic vacuum, and it presents comprehensive durability with stable microstructures and over 70% of residual strength. Based on these material properties, this study further designed two processing methods for SSLR, mold-pressing and roll-pressing, In the former, a press mold along with water condensation necycle system was verified, and the influences of lunar regolith hype, molding pressure and moritos-tenon fit relations are systematically revealed to study the mechanical properties of SSLR bricks and their assembly, In the latter, a specialized 3D printhead was designed for powder extrusion and passive roll-pressing. Therein, the roll-press effects, as well as the flexural and interfacial strengths of print layers are comprehensively investigated considering various other systing aspects for future lunar constructions.
00.0-4	Room 4 - Rio-hased materials			

20-Oct	Room 4 - Bio-based materials DAY 1			
TIME	Title	Authors	corresponding author's email	Abstract
12.45-13.05	Integrating Bio-Based Materials to Mitigate Urban Heat Island Effects	Zeina Hijazi, Amer BAKKOUR, Salah-Eddine Ouldboukhitine, David Sallor, Pascal Henry Biwole, Amziane Sofiane	zeina.hijazi@uca.fr	(Abstract: Not shared - Missing copyright agreement)
13.05-13.25	Enhancing Urban Blodiversity Through Bioreceptive Materials: Insights on Design, Properties, and Additive Manufacturing Applications	Rafael Castillo, María De Los Angeles Ortega Del Rosario, Miguel Chen	rafael.castilio3@utp.ac.pa	Bioneceptivity refers to a material's capacity to support biological colonization without underging blooketerioration, a concept of growing relevance in engineering design. Current challenges in the architecture, engineering, and contraction industry, like waste generation. Co22 emissions, waster recognition, climate change, and increasing urbanization, have driven the search for strategies to mitigate these impacts. One promising approach involves promoting urban biodiversity by developing bioreceptive surfaces and facades, which have garnered recent attendor. This work synthesizes findings from various studies on bioreceptive materials, emphasizing the intrinsic and extrinsic properties most relevant for effective design considerations. Key intrinsic factors influencing bioreceptivity include surface roughness, porosity, and chemical composition, though water retention remains the primary factor for biological growth. Bioreceptivity is also highly dependent on extrinsic environmental conditions such as humidity, air quality, and the availability of organisms in the surroundings, which must be considered during the design phase. In this sense, additine natural curing fellow mentage surject was a surface of the contraction. Furthermore, experimental strategies, such as using organic waste and living materials, explore novel ways to enhance bioreceptivity while promoting ecological sustainability. This analysis emphasizes the integration of materials science, ecological principles, and innovative manufacturing techniques to enhance bioreceptive performance. These materials ofter promising pathways for improving urban biodiversity and supporting ecological restoration efforts. This work aims to develop a comprehensive decision—naking framework for engineers, designers, and architects, highlighting key parameters for promoting bioneceptive structures and fostering bio-inclusive urban spaces.

13.25-13.45	3D printing of wood particle reinforced clay composite in direct ink writing	Biva Gyawali, Kal Bentley, Pavan Akula, Kamran Alba, Vahid Nasir	gyawalb@oregonstate.edu	Additive manufacturing technology offers huge potential for practicing the circular economy, automation in construction, and mass customization in production. It offers freedom in the design, fabrication, and development of novel structures in construction. Environmentally sustainable construction can be promoted by utilizing forest-based products and earthen materials using this technique. There are several studies on the 20 printing (or earther-based materials, such as clay, using natural fibers. However, the study on clay 30 printing judge controls for 30 printing based on clay, wood particles, and water content. Furthermore, this research delves into the impact of printing parameters and materials (wood particles, water content) on the buildability of 30-printed structures. The result shows that an increase in nozzle size, i.e., extustion rate, shows a positive impact on buildability, while higher printing speed has a negative impact on buildability. Similarly, wood particles have shown a reinforcing effect, whereas higher water content has reduced the buildability height. The result shows that the average buildability of the instruer anges from a minimum of 17 mm (mix design; clay, 50 with 50 particle, 50 with 50 waters and water content printed at 90 mm/s using 3 mm nozzle diameter) to a maximum of 236 mm (mix design; clay, 10 wt.% wood particle, 0.5 wt.% xanthan gum, 50 wt.% water content printed at 30 mm/s using 6 mm nozzle diameter). Furthermore, this study briefly discusses the opportunities for future research in this field.
13.45-14.05	Modelling Transport Phenomena of Cementitious Mortars made with bioPCM- Recycled Wood Aggregates.	Hala Sathab, Sergio Nardini, Bernardo Buonomo, Vincenzo Bianco, Ignacio Peralta, Antonio Caggiano	hala.salhab@unicampania.it	This study investigates the thermal behavior and moisture transport phenomena by capillary action of sustainable cementitious composites made with recycled wood aggregates filled with bio-based phase change materials, aiming to enhance energy efficiency and durability in building applications. Two numerical models are developed and validated as enhaltaphsaed thermal model using the Apparent Calorific Capacity Method, and a moisture diffusion model based on Richards' equation and extended Darry's law. Experimental data were obtained from three mortar types: i. ordinary Portland cement, ii. wood mortar, and iii. a third type fabricated with PCM-RWA aggregates labeled as "NRG-WOOD"—and used to benchmark the simulations. The thermal model successfully captured latent heat storage and release during heating and cooling cycles, while the hygic model accurately predicted capillary water absorption across all mixes. Natably, the NRG-WOOD mortar exhibited significantly reduced water patake (15 kg/m²), artibuted to modified pore structures induced by PCM encapsulation, as reflected in elevated Raleigh-Ritz parameters. Both models showed strong agreement with experimental results without requiring post-calibration, underscoring their robustness and predictive reliability. This dual functionality—enhanced thermal regulation and reduced moisture ingress—highlights the potential of PCM-RWA composites as sustainable, high-performance building materials.
14.05-14.25	Polylaminate Waste Valorisation into Mycelium- Based Composites for Sustainable Insulation Applications	Joni Wildman, Walker Pete, Valeria Cascione, Daniel Henk, Andrew Shea	jw89@bath.ac.uk	This study addresses two critical challenges in advancing a sustain-able and circular economy. The construction industry must transition to low-impact materials, as many conventional insulation materials deplete finite resources and have high embodied carbon of such effective alternatives are essential to reduce both operational and embodied carbon of buildings. Concurrently, the world races an increasing volume of waste; recycling options are often preferable to landfill and incineration but can impose environmental burdens. One problematic material is waste polyaminate carbon (e.g. Tera-Pak) which cannot be easily recycled alongside paper products, with the recycling process complex and region-dependent. Mycelium-based composites (MBCs) have emerged as a promising bio-based material capable of transforming lignocellulosic waste into effective insulation products. In their manufacture, fungal mycelium grows on a substrate, forming a natural adhesive as it colonises the material. One fully colonised, the material is often to kill the fungas and produce an intern atterial. While agricultural byprosits, such as straw and hemp-shiv, are common substrate choices, fungi can also grow on more complex waste streams, including polylaminate materials. In this study, the successful growth and binding of polylaminate waste with mycelium to produce MBCs is demonstrated. MBCs were produced using Lentinus tignius mycelium with hemp-polylaminate blends in ratios (by mass of hemp-polylaminate) of 1.0, 2.1, 1.2, and 0.1. Thermal conductivity (i) measurements were conducted, with the measured thermal conductivity of the pure polylaminate MBCs \(\text{A} = 0.035 \) = 0.02 W/MF. Furthermore, increasing the proportion of polylaminate in the substrate blend did not significantly after. Water absorption properties were also evaluated, showing that higher feta-Pak content led to reduced water absorption. Additionally, a life cycle assessment (LCA) was conducted, revealing that these materials exhibit at low globul warming potential
14.25-14.45	Climate-proof, climate-neutral renovations for the Finnish building stock	Tayma Dadssi, Magda Posani	tayma.dadssi@aalto.fi	The climate-change induced rise in extreme weather events, such as heavy rains and heat waves, puts the hygrothermal performance of buildings in a critical situation. Nordic regions specifically, are facing more winter rainfall, and increasing humidity. This can lead to buildings' envelope components experiencing high moisture levels, resulting in increasing heating demand, thermal discomfort, and moisture-related degradation risks. Thermal insulation represents a renovation solution to improve the hygrothermal performance of building envelopes by reducing heat loss and promote moisture-safety. As so, it has the potential to increase the resilience of existing buildings to climate change. When using biobased insulation materials, the intervention also promotes a sustainable approach in construction, thanks to the carbon-negative footprints of these materials, together with the promise of reduction in operational emissions due to improved thermal performance of building envelopes. However, a deep, comprehensive understanding of the performance of locally available bio-based materials and their potential for moisture-safe renovations under current and future climatic conditions is needed to support the development of guidelines for bio-renovations. This provides a perspective on this matter, with a focus on the Finnish context.

21-Oct Room 4 - 3D- printed materials + Heritage and Historic materials DAY 2

	DAY 2			
	Title	Authors	corresponding author's email	Abstract
12.45-13.05	Hygro-Tech: Towards high-tech, low-carbon building components for passive indoor humidity control	Deng Jingyi, Magda Posani	djingyistudy@gmail.com	In northern Europe, relative humidity is expected to rise due to the changing climatic patterns, causing an increase in moistrue-related issues in buildings. In this context, maintaining indoor relative humidity within the comfortable range of 40-60% is essential to reduce the risk of respiratory and spread of viruses among building occupants, while also helping preventing mould growth issues in the building envelope. While conventional HVAC systems are widely used to control indoor humidity, their high embodied and operational emissions pose significant environmental concerns. As a low-tech, low-carbon alternative, hygroscopic building materials offer a passive method of regulating indoor moisture. This work explores a new approach to this solution, considering high-tech production of low-carbon building panels made of hygroscopic bios-stabilised clay, to be used as autonomous humidity control material systems. These panels can be geometrically optimised to maximise surface exposure and enhance moisture buffering capacity. In this work existing literature is assessed and persisting gaps identified. Based on these outcomes, a potential methodology is developed to guide future search, providing a practical framework that integrates material science, digital design, building physics and environmental sustainability.
13.05-13.25	Adaptation of low environmental impact mortar formulations for 3D printing	Sourour Elleuch, Hélène Carré, Christian La Borderie	sourour.elleuch@univ-pau.fr	The construction industry is experiencing a transformative shift with the integration of 3D printing technologies, revolutionizing traditional construction methods. The growing adoption of 3D printing offers a promising approach to minimizing material waste, reducing manufacturing costs, and improving overall efficiency. However, 3D printiable mortars often require a very high cement content and high dosage of admixtures compared to conventional mortars or concretes, which increases their carbon footprint. While 3D printing presents an opportunity to reduce waste and optimize material use, this chaltenge highlights the need for developing low environmental impact materials that maintain the required properties for successful additive construction. In this context, our research explores the advantages of combining low environmental impact materials with 3D printing to maximize the benefits of this innovative approach while addressing the environmental concerns associated with high cement content. Specifically, we focus on designing mortars that meet the rheological, mechanical, and environmental requirements for additive construction. Key parameters such as pumpability, buildability, and extrudability are targeted by selecting ecofinedly cement, fine calcareous filler, silica fume and sand. To ensure compatibility with 3D printing processes, we employ experimental methods such as rheological characterization, extrusion trials, and buildability tests. We adapt the formulation to ensure it possesses the necessary flow, workability, and setting properties required for extrusion and layer-by-layer construction. This adaptability to the 3D printing process is crucial, as it ensures the material can be successfully printed without compromising its performance or structural integrity. This research proposes a low-impact morar that meet the technical demands of additive manufacturing while helping to reduce the environmental footprint of the construction industry.
13.25-13.45	Extrusion-based 3D printing of fiber-reinforced concrete	Haodao Li, Kamal Khayat	hlbb4@mst.edu	Embedding conventional reinforcement in 3D concrete printing (3DCP) remains a critical challenge due to the constraints imposed by the layer-wise deposition process. A promising solution is the incorporation of discontinuous short fibers into printable mixtures, as they can enhance tensile strength and toughness, mitigate the risk of shrinkage-induced cracking, and reduce crack width. In this study, three types of short fibers, namely 6-mm steel fiber, 8-mm polyyropylene (PP) fiber were incorporated into a high-performance printable mixture. The effects of Individual and hybrid fibers on fresh properties, extrudability, mechanical performance, and shrinkage resistance were systematically evaluated. Results indicate that increasing steel fiber volume or partially replacing it with synthetic fibers significantly increased air content and accelerated early slump flow loss, despite improved water retention. Mixtures with up to 2% steel fibers maintained excellent printability, whereas hybrid fiber combinations introduced surface defects while remaining acceptable extrudability. The incorporation of hybrid fibers also increased mechanical anisotropy due to compromised filament quality. Dyring shrinkage was most effectively mitigated by increasing the steel fiber orounne, while partial reductions were observed with the incorporation of PP or PVA fibers. Overall, steel fibers provided optimal performance in balancing itowability, mechanical strength, and filament stability, while hybrid fiber strategies requires careful optimization to avoid print quality degradation.

13.45-14.05	Correlating in-line sensor data to hardened state material properties in Digital Fabrication with Concrete	Derk Bos, Arjen Deetman, Rob Wolfs	<u>d.h.loos@tue.nl</u>	High resolution quality control is essential for many digital concrete fabrication processes, since the systems used are often sensitive to disturbances and the objects that are produced more sensitive to defects when optimized towards material minimization. Furthermore, high-resolution quality control could decrease the uncertainty of the object's material properties and thereby reduce the cement consumption. In-line measurements are preferred over off-line or on-line measurements to obtain this high-resolution control, since it would require less labor, could be conducted at higher frequency, and would measure the same material that will later be placed in the product. However, the properties of the hardened state govern the quality of the finished concrete objects to a large extent. Since these properties are typically determined after 28 days or later, and tested using destructive, off-line methods, high-resolution quality control would be laborious and material intensive. Furthermore, making informed decisions based upon the results would be significantly delayed. To close this gap, this contribution aims to investigate whether there exists a correlation between in-line measured sensor data and off-line measured hardened state properties obtained at a later age. For the current study, a 3D concrete printing system is used that is equipped with various sensors. The material's strength is determined at the deposition age by the slugs test, and at an age of 15 minutes, 1.5 hours, 3 hours, 1 day, 2 days, 7 days, and 28 days by compression tests. For variations in the water-to-solids ratio, the results show that with increasing age the correlation between in-line quality indicators and the material's strength is decreasing. At deposition and ages of 15 minutes, 1.5 hours, and 3 hours, the R-squared adjusted is above 0.9. For 1 and 2 days, it is around 0.8, and for 7 and 28 days, a negligible correlation with and R-squared of around 0.2 is found, which can be attributed to a low sensitivity of the strength at
14.05-14.25	Unravelling the Secrets of Mayan Engineering: Mineralogical Insights into Lime-Based Mortars from the Muyil Pyramid	Md Montaseer Meraz, Pavan Akula, Francisco Jawier Castaneda, Burkan Isgor	montaseer.meraz@gmail.com	The Mayans' skill in crafting highly durable lime-based mortars from natural in-situ materials highlights the sophistication of their engineering. Characterization of such mortars can provide valuable insights into the phases that contribute to long-term physicochemical performance. This study presents Mayan mortars preliminary mineralogical characterization data collected from the Muyli pyramid (built around 300 B.C.) in Quintana Roo state of Mexico. Specifically, X-Ray Fluorescence, X-Ray Diffraction, and Thermogravimetric analysis of the mortar indicate that mortar primarily comprises time and calcareous soil. The strength gain is attributed mainly to the bind of soil particles from calcite precipitation. Replicate mortar samples cast with lime and calcareous soil sourced from the Muyli region indicate that the calcium carbonate polymorphs present in the soil played a critical role in the kinetics of carbonation. The high concentrations of aragonite and calcite in the in-situ soil significantly enhance the carbonation kinetics. Experimental results suggest that aragonite and calcite act as nucleation sites, facilitating the improved kinetics of time carbonation.
14.25-14.45	Non-Destructive Methods for Assessing Hygric Properties in Heritage Masonny: Karsten and Pleyers tube	Riorian Verbruggen, Miniting Chen, Evy Vereecken	florian.verbruggen@student.kuleu ven.be	Determining hygric properties is essential for understanding and mitigating moisture-related risks in heritage masonry. Accurate knowledge of these properties is fundamental for evaluating the behaviour of masonry through numerical simulations. However, sampling in situ is often impractical or even out of the question in the context of heritage masonry due to the cultural and historical significance of such structures. Consequently, there is a pressing need to develop non-destructive techniques for reliably determine the phygic properties of heritage buildings. Therefore, this study explores non-destructive techniques, more specifically the farsten tube and Phygric properties of heritage buildings. Therefore, this study explores non-destructive techniques, more specifically the farsten tube and Phygric properties of reasonry. The research focuses on correlating non-destructive measurements with capillary absorption coefficients obtained through standardized laboratory methods, while also evaluating and refining existing analytical approaches. Partisent ubust and papproaches. Partisent tube, its impact on measurement accuracy and the potential added value of the Pleyers tube in this perspective. The findings confirm that non-destructive methods offer valuable inslights into the hygric properties of masonry, providing a reliable alternative to traditional destructive beroinques. By refining these methods, addressing 3D absorption effects, and ensuring consistency in their application, conservation professionals can enhance their ability to assess and mitigate moisture-related risks, contributing to the long-term preservation of architectural heritage.

20-Oct Room 5 - Structural and mechanical performance DAY 1

TIME	Title	Authors	corresponding author's email	Abstract
12.45-13.05	Low-velocity impact behavior of auxelic cementitious cellular composites (ACCCs)	Jinbao Xie, Branko Šavija	J.Xie-1@tudelft.nl	Auxetic cementitious cellular composites (ACCCs) exhibit promising mechanical properties under static loading conditions, including high racture resistance and effective energy dissipation. however, their performance under impact loading remains largely unexplored. In this study, two ACCCs—designated P25 and P50—featuring different aspect ratios were designed using additive manufacturing (AM)-assisted casting and evaluated under low-velocity impacts using a Schimidt hammer with consistent impact energy. Impact resistance was assessed based on energy absorption, localized damage, crack propagation, and peak reaction force. In addition to single-impact testing, multiple impacts were applied until specimen failure, with performance compared against a reference specimen incorporating circular holes. Strain distribution during impact was captured using Digital timage Correlation (DIC) with a high-speed camera. A numerical model accounting for strain rate effects was developed to simulate the impact behavior of the ACCcs. The results reveal that the ACCCs significantly outperformed the reference design in terms of impact resistance, showing reduced localized damage, increased contact stiffness, and enhanced energy absorption under multiple impacts. This improved performance is attributed to the auxetic behavior, which pulls more material into the impact zone, enhancing energy dispersion and minimizing localized damage, thereby preserving the overall structural imegrity. Among the two designs, P50 demonstrated superior impact resistance due to its enhanced auxetic behavior, which engages more ligaments in energy dissipation and further reduces localized damage. Given the widespread availability of cementitious materials, this twily highlights the potential of ACCcs as lightweight, high-performance protective structural materials for impact mitigation in infrastructure applications.
13.05-13.25	Structural and energy retrofitting of masonry- infilled RC frames subjected to in-plane cyclic loading	Matthildl Monastiridou, Szymon Cholostiakow, Lampros Koutas, Christos Papakonstantinou	mmonastiridou@uth.gr	Textile-Reinflorced Mortar (TRM) has proven to be an effective strengthening solution for masony-inflitled reinforced concrete (RC) frames. Recent studies attempted to integer text Meta registering with standard them all insulation, with promising results. Newey, the so-far solutions make use of ordinary portland cement-based binders (POC), the production of which is a major contributor to global CO2 emissions. New sustainable mortars, such as those containing alkalia-activated materials (e.g. goopolymers), can help address this issue, as recent studies have shown that they can offer similar or better performance than standard OPC mortars. This study aims to investigate the combination of structural and energy retrofitting of existing masonry-inflitled PC frames. One-story, one-bay specimens were constructed at a 1.2.5 scala. Regarding the strengthened specimen, basalt fiber meshes embedded in metalacinfi-based geopolymer mortar were used for structural retrofitting, while a conventional thermal insulation system with expanded polystyrene was used for energy retrofitting. The two specimens were subjected to in-plane cyclic loading.
13.25-13.45	Stochastic multi-hazard vulnerability assessment of railway masonry arch bridges subject to seismic and flood hazards	Carlos Cabanzo, Monica Santamaria, Mitsuyoshi Akiyama, Paulo B. Lourenço, José C. Matos	carlos.cabanzo@civil.uminho.pt	Natural disasters are unavoidable and may lead to serious damage to transportation networks, often resulting in catastrophic losses. Masonry arch bridges (MABs) represent around 40% of the bridge stock in many European railway networks. In Portugal, MABs with larger spans and thinner piers were built during the early 20th century to improve the national network. These larger structures are expected to continue operating as a crucial part of the railway network without elevated maintenance costs. Moreover, some are located in regions with high sensine and flood bearands. The joint effects of these hazards in out-of-plane behavior are often overlooked, and their assessment may lead to identifying possible mitigation needs. The present research presents the vulnerability assessment accounting for the likelihood of both seismic and flood events to occur simultaneously on two large multi-span masony arch bridges in Portugal. The results show the effects of the loss in stiffness due to asymmetrical socur in the out-of-plane fallen mechanism of the masony arch bridges. Fragility curves are obtained by considering structure-related uncertainties for different levels of intensity given by peak ground acceleration for the seismic hazard and flow discharge for the flood hazard. The resulting vulnerability curves, obtained by employing surrogate models, provide useful information for prioritizing assets considering their exposure to multiple hazards, thus aiding in maintaining the desired performance of the railway network.
13.45-14.05	GNP-Coated Aggregates for improving Concrete's Mechanical Properties.	PAUL A, ABONGO, Myrsini E. Maglogianni	hw6300@wayne.edu	This study evaluates the performance of concrete incorporating graphene nanoplatelets (GNPs) as aggregate coatings compared to direct reinforcement. Concrete samples were prepared using natural aggregates, GNP-reinforced mixes, and GNP-coated aggregates. By employing highly dispersed GNP supersions, as uniform aggregate coverage with less than 5% material tos suring mixing was achieved. The compressive and flexural strength, as well as interfacial characteristics, were assessed using various GNP amounts to examine their influence on mechanical performance. Microstructural analyses using scanning electron microscopy (SEM) revealed the uniform dispersion of GNPs and their strong adhesion to aggregate surfaces, significantly contributing to improved mechanical properties. These findings highlight the transformative potential of GNP-coated aggregates in enhancing concrete's mechanical performance.
14.05-14.25	Uniaxial Tensile Stress Relaxation and Cracking Behavior of SHCCs Incorporating Blast Furnace Slag and Fly Ash	Faizudin Hafiz Zadah, Yao Luan	iuanyao@mail.saitama-u.ac.jp	This study investigates the early-age (7 days) tensile stress relaxation and cracking behavior of stag- and fly ash-based strain-hardening comentitious composites (SHCCs) under sealed curing, Mechanical properties were characterized via compressive strength, Young's modulus, and univasit tensile tests, while stress relaxation was assessed under both pre-cracking (70% and 69% of the first cracking stress) and post-cracking (0.6% and 1.0% tensile strain) conditions. Crack formation and evolution were monitored using digital image correlation (DIC). Compared for ly ash-based SHCCs, skelp-based SHCCs exhibited higher compressive strength and stiffness due to faster hydration and the development of a denser, more viscoelastic matrix. Both mixtures displayed ductile, strain-hardening behavior; however, stag-based SHCCs showed slightly superior tensile performance with higher strength and finer multiple cracking. Stress relaxation in stage mixes was more pronounced under both pre- and post-cracking conditions, particularly at higher stress levels, likely due to enhanced microcrack formation and fiber debonding. In contrast, fly ash-based SHCCs exhibited greater relaxation at lower stress levels. For both materials, the most significant stress decay occurred within the first 30 minutes, followed by a slower, stable phase. DIC analysis confirmed minimal change in existing crack geometry during relaxation, but revealed the initiation of new microcracks, especially in slag-based specimens, contributing to greater deformation and stress decay. These findings enhance the understanding of time-dependent tensile behavior in SHCCs and support their application in structural repair systems requiring long-term deformation control.
14.25-14.45	DEM Simulation on Creep of Calcium Silicate Hydrate in Microscale	Zhe Zhang, Guoqing Geng	zachz_24@nus.edu.sg	Poster contribution (Abstract: Not shared - Missing copyright agreement)

21-Oct Room 5 DAY 2

12.45-13.05		Timothy Kofi Ametefe, Mark Bediako	tkametefe@csir.brri.org	The construction industry increasingly emphasizes sustainability and durability, especially in concrete technology, due to environmental
12.40-13.00	Durability Performance of Temary Blended Self- Consolidating Concrete: A Comparative Study with Portland Limestone Cement-based SCC	initionly soil selecter, Park Seusso	(kametereacsil.olil.olig	concerns associated with cement production and the meed for resident infrastructure. A broader study which adopted the simples centroid mixture design approach developed a self-consolidating concrete (SCC) mix with a ternary mixed binder, optimizing the content of waste glass powder (6P) and low-grade calcined caly (CC). The gala was to develop a more sustainable and furable SCC by reducing the reliance on traditional cement and divert glass waste from landfills. For this study, two types of concrete mixes were prepared: a control SCC mix (CM) with Portland limestone cement (PLC) as the only binder and another with the ternary mixed binder (TM). The ternary blend constituted of 798 PLC, 21% 6P and 6% CC. The durability performance including water absorption, soptivity, resistance to acid attack and rapid chloride permeability were evaluated over curing periods of 28, 56 and 90 days and compared with the control mix. Results indicate that TM had consistently lower water absorption (up to 13%), reduced initial sorpivity (up to 19%), and significantly better resistance to chloride ingress and acid attack compared to CM. The ternary blended SCC mix was found to be a more durable alternative to conventional PLC-based SCC, with reduced permeability and improved resistance to chemical attacks.
13.05-13.25	How to Protect Our Façade Coating Mortars? A Glance at Different Approaches to Improve Surface Protection	Jéssica D. Bersch, Angela B. Masuero, Denise Dal Molin, Inés Flores-Colen	jessica d. bersch@tecnico.ulisboa. pt	This study addresses the challenge of protecting building façades by evaluating lime-based coating mortars treated with thirteen surface finishes, including silicate paints and commercial hydrophobic, oleophobic, and photocatalytic products. The goal was to identify the most effective surface protection solutions by assessing multiple performance aspects, particularly self-cleaning and anti-graffiti capabilities. A straightforward assessment framework was established, focusing on key surface properties to support decision-making, initial evaluations included measurements of gloss, chromatic coordinates, static water contact angle, and roughness. Subsequently, specimens were stained with methylene blue and exposed to ultraviolet light for 145 hours to evaluate self-cleaning performance via color change monitoring. A graffiti removal was then conducted, using silver spray paint and steam cleaning, with the cleaning efficiency assessed using an established scale. At 60°, gloss was highest for the anti-graffic coating, all values were generally low. Overall, color compatibility was preserved. Hydrophobic behavior was observed in silicate and hydrophobic treatments, while most photocatalytic coatings showed hydrophilic properties. The lime-based photocatalytic paint demonstrated the best self-cleaning performance, and, as expected, anti-graffit coatings were most effective in graffiti removal. Some non-photocatalytic coatings also led to color changes under light, and one photocatalytic treatment provided partial resistance to graffiti. The findings underscore the need for additional research on rain exposure and long-term durability. At this stage, selecting a suitable coating depends on environmental exposure and anticipated degradation agents.
13.25-13.45	Point Cloud-Based Damage Detection for Reinforced Concrete Structures by Deep Learning	Kazuma Shibano, Toma Tsubota, Moeka Mukai, Hiromu Tanaka, Hikaru Umezawa, Ninel Alver, Tetsuya Suzuki	kazuma3267@gmail.com	This study investigates the factors affecting crack detection accuracy using three-dimensional point clouds acquired by Terrestrial Laser Scanners (TLS). The research focuses on understanding how measurement conditions—including scanning distance, incidence angle, and point cloud density—influence the ranging results by TLS. In the crack detection procedure, PointNet architecture is employed for binary crack classification, with various input feature combinations evaluated including 3D coordinates, R68 values, intensity data and local geometric features derived from eigenvalue decomposition. Experiments were conducted on a reinforced concrete headworks structure constructed in 1976, using both TLS and Handheld Laser Scanner (HLS) measurements for ground truth validation. Results demonstrate that local geometric features significantly improve detection performance, achieving improvement of F1 score compared using only 3D coordinates. The study reveals that point cloud density, determined by scanning distance and incidence angle, critically affects ranging accuracy in the depth direction. Optimal neighborhood radius for local feature extraction varies between planar and curved surfaces. These findings provide practical guidance for improving crack detection accuracy in civil engineering applications using point cloud data and deep learning methods.
13.45-14.05	Comparison between different total sulfur measurement techniques for the screening of aggregates with potential oxidation issues from iron sulfide minerals	Dip Banik, Alexander Brand	<u>dipbanik@vt.edu</u>	Extended abstract (Abstract: Not shared - Missing copyright agreement)
14.05-14.25	Effect of modification conditions on recovery and non-recoverable creep compliance of polymer-modified bitumen	Simona Bitarytė, Audrius Vaitkus, Judita Škulteckė	simona.bitaryte@viiniustech.lt	To investigate the influence of styrene-butadiene-styrene (SBS) polymer on the rheological properties of bitumen, researchers modified virgin bitumen with SBS under controlled laboratory conditions using a high-shear mixer. However, there is currently no standardized procedure for bitumen modification with SBS, sa a result, different researchers apply varying conditions. This study aims to determine the impact of modification parametersuch as temperature, mixing time, and mixing speed—on recovery and non-recoverable creep compliance (as measured by the multiple stress creep and recovery test) at 60° CP for polymer-modified bitumen. For this purpose, 70/100 penetration-grade virgin bitumen was modified with 30° KSB st at 185° C using a laboratory high-shear mixer. The modification was conducted for different durations (1, 2, and 3 hours) and at various rotation speeds; 4000 pm, 6000 pm, and a combination of 6000 pm followed by 300 pm. Additionally, for the 1-hour modification, various speeds (ranging from 50001 60000 pm) and temperatures were tested. The results showed that both the rotation speed and the modification duration significantly affected the recovery and non-recoverable creep compliance of the polymer-modified bitumen. The study revealed that, depending on the modification conditions, the creep and recovery properties of the modified bitumen could vary by more than a factor of two. These findings highlight the importance of carefully controlling modification time, mixing speed, and temperature when modifying bitumen with polymer using a high-shear mixer in laborators.
14.25-14.45	Determination of Complex Modulus from a Back-Analysis Process of Frequency Response Functions for Asphalt Mixtures using FEM modeling	Thamires Ximenes Cavalcante, Ana Karoliny Lemos Bezerra, Mauro José Da Silva Filho, Lucas Babadopulos, Jean-Claude Carret	thamires.ximenes. Cavalcante.2@ens.etsmtl.ca	This paper presents a method to determine the complex modulus of a sphalt mixtures (AM) from Frequency Response Functions (FRFs) using a back-analysis approach. The main objective was to optimize the process for obtaining the linear viscoelastic (LVE) properties of AM based on non-destructive impact resonance test (RIT) data. The methodology combines an optimization code developed in MATLAB with numerical simulations in COMSOL, using the Finite Element Method (FEM) in 2D and the 252P1D rheological model to simulate the LVE behavior. The combined use of MATLAB and COMSOL allowed for efficient integration between numerical simulation and the optimization process, resulting in a more robust and automated methodology for analyzing viscoelastic materials. The results obtained from the IRT were compared with those from the Tension-Compression test (TCT). A good agreement was observed between the results of both tests, demonstrating the effectiveness of the proposed method. The expected impact of this research is to contribute to the advancement of computational tools for material characterization in engineering, with potential applications in road infrastructure projects and other related fields.